Catalvalor - A catalyst for change: turning a research project into business

Andreia F. Peixoto, Cristina Freire

Resumo


The CATALVALOR project roadmap is an example of how a research project in the area of Chemical Science and Engineering, developed inside the academy, could be transformed into a business project and later in a start-up, step-by-step and with the commitment of all team members. In order to solve the problem of biodiesel production a sustainable solution was developed, including a disruptive technology based on a reusable solid catalyst that allows the use of all type of feedstocks in a simplified industrial chemical process, consequently decreasing the biodiesel operation production costs and making biodiesel an alternative fuel to the petroleum-based fuel. Here we present the roadmap of CATALVALOR project: a) from the problem to solution; b) from the research solution to the business idea, towards c) the start-up creation, the INNOVCAT Company.

Palavras-chave


CATALVALOR; solid catalyst; biodiesel; entrepreneurship

Texto Completo:

PDF

Referências


Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: A comparative review. Energy Conversion and Management, 63(0), 138-148. doi:http://dx.doi.org/10.1016/j.enconman.2012.02.027

Adewale, P., Dumont, M. J., & Ngadi, M. (2015). Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable & Sustainable Energy Reviews, 45, 574-588. doi:10.1016/j.rser.2015.02.039

Anuar, M. R., & Abdullah, A. Z. (2016). Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renewable and Sustainable Energy Reviews, 58, 208-223. doi:http://dx.doi.org/10.1016/j.rser.2015.12.296

Bankovic-Ilie, I. B., Stojkovic, I. J., Stamenkovic, O. S., Veljkovic, V. B., & Hung, Y.-T. (2014). Waste animal fats as feedstocks for biodiesel production. Renewable & Sustainable Energy Reviews, 32, 238-254. doi:10.1016/j.rser.2014.01.038

Datta, A., & Mandal, B. K. (2016). A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renewable & Sustainable Energy Reviews, 57, 799-821. doi:10.1016/j.rser.2015.12.170

Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, Supplement 1(0), S108-S117. doi:http://dx.doi.org/10.1016/j.apenergy.2009.04.036

Dimian, A. C., & Rothenberg, G. (2016). An effective modular process for biodiesel manufacturing using heterogeneous catalysis. Catalysis Science & Technology, 6(15), 6097-6108. doi:10.1039/c6cy00426a

Energy Information Administration, International Energy Outlook 2011, Report No. DOE/EIA-0484, 2011, Washington, USA, 2011, http://www.eia.gov/ forecasts/ieo/pdf/0484(2011).pdf

European Commission, Renewable energy progress report COM (2013), 175 final, Brussels, 2013, http://ec.europa.eu/energy/renewables/reports/ doc/com 2013 0175 res en.pdf

Jaiyen, S., Naree, T., & Ngamcharussrivichai, C. (2015). Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel. Renewable Energy, 74, 433-440. doi:10.1016/j.renene.2014.08.050

Lam, M. K., Lee, M. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500-518. doi:10.1016/j.biotechadv.2010.03.002

Lee, A. F., & Wilson, K. (2015). Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catalysis Today, 242, 3-18. doi:10.1016/j.cattod.2014.03.072

Luque, R., Lovett, J. C., Datta, B., Clancy, J., Campelo, J. M., & Romero, A. A. (2010). Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy & Environmental Science, 3(11), 1706-1721. doi:10.1039/c0ee00085j

Meher, L. C., Vidya Sagar, D., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248-268. doi:http://dx.doi.org/10.1016/j.rser.2004.09.002

Pires, L. H. O., de Oliveira, A. N., Monteiro, O. V., Jr., Angelica, R. S., da Costa, C. E. F., Zamian, J. R., . . . Rocha Filho, G. N. (2014). Esterification of a waste produced from the palm oil industry over 12-tungstophosforic acid supported on kaolin waste and mesoporous materials. Applied Catalysis B-Environmental, 160, 122-128. doi:10.1016/j.apcatb.2014.04.039

Sani, Y. M., Daud, W. M. A. W., & Aziz, A. R. A. (2014). Activity of solid acid catalysts for biodiesel production: A critical review. Applied Catalysis a-General, 470, 140-161. doi:10.1016/j.apcata.2013.10.052

Shahir, V. K., Jawahar, C. P., & Suresh, P. R. (2015). Comparative study of diesel and biodiesel on CI engine with emphasis to emissions-A review. Renewable & Sustainable Energy Reviews, 45, 686-697. doi:10.1016/j.rser.2015.02.042

Tabatabaei, M., Karimi, K., Horvath, I. S., & Kumar, R. (2015). Recent trends in biodiesel production. Biofuel Research Journal, 2(3), 258-267. doi:10.18331/Brj2015.2.3.4